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Abstract
We investigate the first and second moments of the inverse participation ratio 
(IPR) for all eigenvectors of the Laplacian on finite random regular graphs 
with n vertices and degree z. By exactly diagonalizing a large set of z-regular 
graphs, we find that as n becomes large, the mean of the inverse participation 
ratio on each graph, when averaged over a large ensemble of graphs, 
approaches the numerical value 3. This universal number is understood as 
the large-n limit of the average of the quartic polynomial corresponding to 
the IPR over an appropriate (n− 2)-dimensional hypersphere of Rn. For a 
large, but not exhaustive ensemble of graphs, the mean variance of the inverse 
participation ratio for all graph Laplacian eigenvectors deviates from its 
continuous hypersphere average due to large graph-to-graph fluctuations that 
arise from the existence of highly localized modes.

Keywords: graph theory, random regular graphs, Laplacian, inverse 
participation ratio, localization

(Some figures may appear in colour only in the online journal)

1. Introduction

Much of condensed matter physics involves the study of either localized or itinerant degrees 
of freedom that exist on the sites of a Euclidean lattice, defined by a notion of physical dis-
tance between a site and some number of proximate or ‘neighboring’ ones. The relationship 
between a site and its neighbors defines both the dimension of space, d and a finite set of 
lattice vectors aj ∈ Rd, j = 1, . . . , d that can be used in combination with a set of integers 

{m} with mi ∈ Zd to index n lattice sites via Ri =
∑d

j=1 mijaj . Examples include the fourteen 
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Bravais lattices in three spatial dimensions. However, it is often instructive to consider the 
same physical degrees of freedom on a non-Euclidean lattice, or graph, where no distance 
metric exists. A finite lattice of n sites is replaced by a graph G, consisting of a set of vertices 
V = {vi}, each connected by zi undirected edges to its neighboring vertices. The quantity zi 
is known as the degree of the vertex vi, and is equivalent to twice the spatial dimension for a 
hypercubic lattice.

Studying a given physical model on a graph offers many technical benefits including the 
ability to: (i) study arbitrarily long range interactions where exact mean-field solutions may 
be available, (ii) smoothly tune and control the local dimensionality and (iii) easily encode 
the randomness and disorder that often exists in real systems. Celebrated examples from sta-
tistical physics include the solution of the Ising model and its generalizations; graph coloring 
and random percolation problems (for a review see [1]). Anderson’s model of non-interacting 
electrons hopping on a disordered lattice [2] was first solved on the Cayley tree (Bethe lattice) 
[3], providing deep physical insights into the nature of localization in quantum mechanical 
systems. More recently, the ability to study graphs in the limit z → ∞ has lead to the develop-
ment of dynamical mean field theory [4], allowing for systematic investigations of candidate 
microscopic models of the high temperature superconductors [5].

The discrete Laplacian matrix L plays a crucial role in defining any physical model on a 
graph, as it quantifies the energy cost of rapidly varying some local degree of freedom among 
a set of neighboring vertices. For example, it encodes the classical dynamics in random vibra-
tional networks [6] as well the onset of ferromagnetism in the classical [7] and quantum O(n) 
model [8, 9] on graphs. It appears in models of non-interacting bosons hopping between graph 
vertices, where the existence of a Bose–Einstein condensation transition on complex networks 
can be rigorously proven [10].

In this paper, we are interested in the properties of the Laplacian defined on finite sized 
regular graphs, defined by the constraint that each of the n vertices is connected to exactly z 
neighbors. Examples with n  =  100 and z = 3, 8 are shown in figure 1. Such graphs possess 
many important mathematical properties [14] while still retaining similarities to the physically 
realizable Bravais lattices discussed above.

Much is known about the spectral properties of random regular graphs, both in the thermo-
dynamic limit n → ∞ [15–17] and more recently, at finite (but large) n [18–21]. The analyses 
of spectral statistics have yielded fruitful and universal connections [22] between random reg-
ular graphs and the Gaussian orthogonal ensemble of random matrix theory [23–25] known 
to be relevant in describing the fluctuations of energy levels in physical dynamical systems.

Substantially less is known about the eigenvectors of L [26] with early work focusing on 
empirical analyses of nodal domains [27, 28] or specific vectors [29], as as it is not possible 
to apply many of the standard tools of analysis for Euclidean lattices, including the Fourier 
transform. Subsequently, a series of results [18, 21, 30, 31] have shown that for suitably large 
n, the eigenvectors of random regular graphs are delocalized—they have few non-zero entries. 
Very recently, the breakthrough works of Bourgade et al [32] and Backhausz and Szegedy 
[33] have proven exiting new results that the eigenvector components are Gaussian independ-
ent and identically distributed for large n. To our knowledge, the physical implications of these 
new results for finite realizations of z and n amenable to direct numerical analysis have yet to 
be explored.

To address this gap, we systematically study the eigenvectors of the Laplacian matrix on a 
large class of finite size random regular graphs through brute-force numerical diagonalization. 
We investigate the statistics of the inverse participation ratio, a scalar proxy for localization, 
and numerically observe that its mean across all eigenvectors approaches a finite universal 
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value equal to 3, independent of graph degree. We quantify the second moment of the distribu-
tion and find a dependence both on degree z and the number of vertices n.

The paper is organized as follows: we begin with a formal definition of the discrete 
Laplacian on graphs in sections 2 and describe our numerical results for the inverse participa-
tion ratio in section 3. In section 4, we analyze the inverse participation ratio as a polynomial 
function on an (n− 2)-dimensional subsphere of n-dimensional real space. This perspective 
allows us to calculate exact values for the first and second moments of the inverse participa-
tion ratio over a continuous domain which contains the (terminal points of the) eigenvectors 
of the Laplacian. Section 5 compares the values of the theoretically derived moments to those 
numerically computed from a large set of finite size random regular graphs. We analyze the 
deviations from the theoretically derived second moment with a discussion of localized eigen-
vectors and highlight implications for their use in computing physical observables on finite 
random regular graphs.

2. The graph Laplacian

The Laplacian matrix generalizes the continuous Laplace operator ∆ ≡ ∇ ·∇ to encode vari-
ations of any continuous function φ : V → C which can take a value φi on the vertex vi. The 
physical importance of this matrix stems from the fact that solutions of ∆φ = 0 correspond 
to the Dirichlet energy functional which is stationary in some spatial region. The particular 
extension of Δ to a graph that we employ arises from the discrete approximation to the sec-
ond continuous derivative of φ on a hypercubic lattice in d spatial dimensions with unit lattice 
spacing:

∆φ(Ri) ≈
d∑

j=1

[φ (Ri + ej) + φ (Ri − ej)− 2φ (Ri)] (1)

where ej are the Cartesian unit vectors with elements ekj = δkj and δkj is the Kronecker δ-
function. On a regular graph G consisting of n vertices vi, each with degree z, the local con-
nectivity is encoded in an adjacency matrix Aij where

Aij =

{
1; if vi and vj share an edge,
0; otherwise. (2)

Figure 1. Regular graphs with n  =  100 vertices and degrees z  =  3 and z  =  8 constructed 
using NetworkX [11] via the Steger–Wormald algorithm [12, 13].
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Comparing with equation (1), we can write the elements of the graph Laplacian matrix as the 
difference between the degree and adjacency matrices of G:

Lij = zδij − Aij (3)

and observe that z corresponds to twice the dimension on a hypercubic lattice. As mentioned 
in the introduction, L may appear in the Hamiltonian of numerous physical systems defined 
on a graph in the form:

H =
1
2

n∑
i,j=1

φ∗
i Lijφj . (4)

A spectral decomposition of L provides a route to the determination of the equations of motion 
governing a classical system, or the nature of the wavefunctions and allowed energy eigen-
states for a quantum mechanical one.

2.1. Exact diagonalization

We now focus on the spectral decomposition of Laplacian matrices drawn from an ensemble 
of random regular graphs with with n vertices and degree z. These matrices are generated using 
the O(nz2) algorithm of Steger and Wormald [12]. From the vertex neighbor list of each graph, 
we construct the adjacency matrix A and then exactly diagonalize the resulting n× n sparse 
Laplacian matrix L given in equation (3). In this paper, we present results for graphs with

z ∈ {3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
n ∈ {200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 10 000}

where z and n have been chosen with an eye towards exploring their interdependence for 
large graphs. All averages are performed over a set containing NG graph realizations, with 
NG  =  5000 for n  <  5000 and NG  =  1000 graphs for n � 5000. The exact number of unique 
graphs, NG  with a given n and z grows quickly with n but is unknown in general. An asymp-
totic result for degrees satisfying z �

√
2 log n− 1 was proved by Bollobás in [34]. Explicit 

counts for small n and z can be found at the online encyclopedia of integer sequences [35], e.g. 
for z  =  3 and n  =  16, NG = 4060.

We begin our analysis by describing the eigenvalue distribution of L. For n � 1, the limit-
ing form of the density of states ρ(ε), the probability of an eigenvalue falling between ε and 
ε+ dε, is given by the Kesten–McKay law [15, 16, 20]:

ρ(ε) =
1
n
δ(ε) +

z
2π

√
4(z− 1)− (ε− z)2

z2 − (ε− z)2
; |ε− z| � 2

√
z− 1. (5)

For finite values of n, Metz et al have recently computed the 1/n corrections to this expression, 
originating from the contributions of loops of all possible lengths.

For a graph with n vertices, the eigenvalues of the Laplacian matrix {εi} are determined 
by exact diagonalization, and a comparison to equation (5) can be made by numerically con-
structing the histogram:

〈ρ(ε)〉 =

〈
1
n

n∑
i=1

δ(ε− εi)

〉
 (6)

where an average over NG graph realizations is indicated by the angle brackets: 
〈· · · 〉 ≡ (1/NG)

∑
G(· · · ). The results for n  =  1000, z = 3, 4, 5, 10, 20, 50 and NG  =  5000 
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are shown in figure 2. We observe only small graph-to-graph variations and find excellent 
agreement with the Kesten–McKay semi-circle law of equation (5) using 50 eigenvalue bins 
(solid line). For n  >  1000 there is no visible discrepancy on this scale between the numer ical 
results and the prediction for the large n limit. For finite sized random regular graphs, the 
spectrum of the Laplacian consists of a single eigenvalue at ε = 0 separated by a z-depen-
dent gap [36] to a quasi-continuum of eigenvalues bounded between εmin = z− 2

√
z− 1 and 

εmax = z+ 2
√
z− 1.

3. The inverse participation ratio

Less is understood about the set of eigenvectors E = {x : Lx = εx} [17, 27, 28] although for 
certain classes of regular graphs with z ∼ O(n), they are believed (with high probability [18]) 
to be delocalized—meaning they have many non-zero components. The eigenvalue ε = 0 with 
weight 1/n in equation (5) and figure 3 corresponds to the special case of the Perron–Frobenius 
mode: ℘ ≡ (1/

√
n, . . . , 1/

√
n) and via orthogonality it follows that x · ℘ =

∑
i xi = 0 for any 

eigenvector x �= ℘. We wish to develop an understanding of the properties of the remaining 
eigenvectors E ≡ E \ {℘}, and in particular, determine how the non-zero elements of an arbi-
trary x ∈ E are distributed amongst its n coordinates.

To this end, we study the notion of localization of an eigenvector using the inverse par-
ticipation ratio. Historically, the participation ratio p was introduced to aid in classifying the 
properties of atomic vibrations in disordered lattices [37]. It describes the fraction of the total 
number of sites which participate in a given normal mode vibration corresponding to the 
eigenvector x = (x1, . . . , xn) ∈ Rn and takes the value

p(x) =
(µ1)2

µ0µ2 (7)

Figure 2. The probability of graph Laplacian eigenvalues for n  =  1000 vertices with 
degrees z = 3, 4, 5, 10, 20, 50 computed by diagonalizing numerically constructed 
graphs (shaded region) compared with the large-n limit Kesten-McKay law defined 
in equation  (5) (solid line). Eigenvalues in the continuum are bounded between 
εmin = z− 2

√
z− 1 and εmax = z+ 2

√
z− 1, while the Perron–Frobenius mode with 

weight 1/n is shown as a spike at ε = 0.
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where µr =
∑n

i=1 |xi|2r can be thought of as the rth moment of the kinetic energy of the mode. 
If a given normal mode only involves the motion of a single atom, it is characterized as local-
ized and has p  =  1/n. A vibrational mode consisting of all atoms participating equally is called 
extended and has p  =  1. An equivalent measure was employed by Visscher [38] to study the 
degree of localization of electronic eigenstates in the Anderson model [2] with implications 
for the existence of a metal-insulator (delocalization-localization) transition in the presence 
of disorder.

When considering normalized eigenvectors x · x = ||x|| = 1, it is often more convenient to 
consider the associated inverse participation ratio (IPR):

1
p(x)

≡ IPR(x) = n
n∑

i=1

x4i . (8)

For the Laplacian matrix in equation (3) with x ∈ E we have

1 � IPR(x) �
n
2 (9)

with bounds corresponding to the extended Perron–Frobenius (lower bound) and localized 
(upper bound) modes, respectively. The finite size scaling of IPR(x)/n as n → ∞ provides 
information on the existence of a mobility edge, which defines the portion of the spectrum 
with robust delocalized states. This scaling has been extensively studied for a large class of 
random matrices [39–42].

The inverse participation ratio thus provides a convenient single scalar value measuring the 
degree to which a particular eigenvector is localized (p−1 ∼ O(n)) or extended (p−1 ∼ O(1)). 
To obtain information on the reduced set of Laplacian eigenvectors E corresponding to non-
zero eigenvalues, we construct a histogram of values in analogy with equation (6). The non-
linear form of the IPR necessitates that the order of averaging is important, and we must 
compute

ρ(IPR) =
1

n− 1

∑
x∈E

δ(IPR− IPR(x)) (10)

Figure 3. Histograms of IPR values for the Laplacian matrix on random regular graphs 
with n  =  1000 vertices and degrees z = 3, 4, 5, 10, 20, 50. Solid lines represent fits to a 
Gaussian distribution.
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for each graph realization separately before averaging over graphs. The resulting graph aver-
aged distributions are shown in figure 3 for n  =  1000, z = 3, 4, 5, 10, 20, 50 and NG  =  5000. 
The solid lines show the results of a fit to a Gaussian distribution for each n and z and there 
are clear deviations which skew to larger IPR values, most notably for small z. For fixed n, 
increasing z decreases the width of the distribution, and slightly improves the residual of the 
Gaussian fit, but quite strikingly, the mean stays at a value that is numerically very close to 3, 
with the result appearing to be exact as n → ∞.

This empirical finding warrants an explanation, which we provide subsequently in sec-
tion 4. In order to motivate our approach, we appeal to progress in understanding the statistics 
of eigenvectors in the more general setting of random matrix theory. Recently, Bourgade et al 
[32] and Backhausz and Szegedy [33] undertook a systematic study of eigenvector statistics of 
sparse random matrices. They recovered specific information about the eigenvectors of adja-
cency matrices of random regular graphs whose degree z is bounded by the number of vertices 
n. Mirroring the hypothesis in [32], let δ > 0 be an arbitrarily small constant. For a random 
z-regular graph which satisfies nδ � z � n2/3−δ their main result, theorem 1.1, implies that the 
entries of those eigenvectors of random regular graphs which are orthogonal to the Perron–
Frobenius mode ℘ have asymptotically independent Gaussian distributed entries. Moreover, 
it is well-known that vectors whose entries are independently identically Gaussian distributed 
are uniformly distributed on the unit sphere. (See the textbook of Cramér [43, chapter 24] and 
the algorithmic implementation of this fact by Muller [44].) Together, these results suggest 
that the statistics of the inverse participation ratio can be directly investigated by computing 
moments of the IPR function using the uniform probability distribution on a subsphere which 
is orthogonal to ℘.

4. Analysis of the IPR on a hypersphere

In the previous section we numerically investigated the distribution of IPR values for all non 
Perron–Frobenius eigenvectors of each graph Laplacian across a large ensemble of graphs and 
empirically observed that for n � 1:

〈
1

n− 1

∑
x∈E

IPR(x)

〉
≈ 3 . (11)

This result can be understood by exploiting the geometry of the set of eigenvectors 
E = E � {℘} of each graph. Their terminal points lie on a hypersphere S(℘) which is orthog-
onal to the Perron–Frobenius mode ℘, and is a subsphere of the standard real unit sphere 
S = {u ∈ Rn : ||u|| = 1}. In order to study the properties of the inverse participation ratio on 
a space containing E, we observe that the function IPR(x) is just a polynomial of n variables 
xi composed from the sum of fourth order monomials IPR(x) = n(x41 + · · ·+ x4n) which maps 
points x ∈ S(℘) ⊂ Rn to R . As described above, for random regular graphs with large n, the xi 
can be taken to be independent and identically distributed according to the normal distribution 
[32, 33] and thus the vectors x ∈ E tend towards being uniformly distributed on S(℘). Thus in 
the limit of large n, the eigenvector and graph averages in equation (11) can be approximated 
by the continuous expectation value:

µ1
IPR ≡ 〈IPR〉S(℘) =

∫

S(℘)
IPR(x)P(x)dσ(℘) (12)

T B P Clark and A D Maestro J. Phys. A: Math. Theor. 51 (2018) 495003
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where dσ(℘) is the measure and P(x) the uniform distribution on S(℘):

P(x) =
1∫

S(℘) dσ(℘)
. (13)

Similarly the second moment, µ2
IPR, corresponding to the variance of the IPR distributions 

in figure 3 can be investigated by averaging the eighth order polynomial [IPR(x)]2 on S(℘) and 
employing the usual identity

µ2
IPR ≡

〈
(IPR)2

〉
S(℘)

−
(
µ1
IPR

)2
. (14)

Using equations (13) in (12) and (14) thus allows us to compute the continuous first and 
second moments of the inverse participation ratio via the integration of fourth and eighth 
order polynomials on S(℘). This can be accomplished using the short note of Folland [45] 
which provides a formula for integrating a polynomial over a sphere. Folland’s formula is 
stated for a monomial xa = xa11 · · · xann  and extends linearly to polynomials 

∑
a ca · xa with 

numerical coefficients ca. Furthermore, the integral of a monomial is dependent only on 
the Gamma function Γ(b) =

∫∞
0 tb−1e−t dt  where b is a complex number with positive real 

part. To proceed, write dσ for the surface measure on the unit sphere S ⊂ Rn. Folland’s 
result is the following.

Theorem 1 ([45]). Let xa = xa11 · · · xann  be a monomial, so that aj � 0 for all 1 � j � n. 
Setting bj = 1

2 (aj + 1),

∫

S
xa dσ =




0 if some aj is odd,

2Γ(b1)Γ(b2)···Γ(bn)
Γ(b1+b2+···+bn)

if all aj are even.

We wish to average the polynomial IPR(x) over the subsphere S(℘) ⊂ S that is orthogonal 
to the Perron–Frobenius vector ℘. Thus, in order to use theorem 1 we must first rotate our 
subsphere S(℘) around a (n− 2)-dimensional subspace to coincide with the subsphere S(en) 
as depicted for the case n  =  3 in figure 4.

Note that although the target sphere S(en) is defined by coordinates in Rn, the nth coordi-
nate of each of its points equals zero. Hence, S(en) is realized as the unit sphere of Rn−1 which 
is embedded in Rn according to the rule (y1, . . . , yn−1) �→ (y1, . . . , yn−1, 0). Changing vari-
ables therefore allows the direct application of theorem 1 to the unit sphere in Rn−1 to achieve 
our result. The remainder of this section is devoted to these analytic calculations.

4.1. The rotation matrix Q

The required change of variables is performed via a rotation matrix Q ∈ SO(n) which has the 
property that for any y ∈ S(en) there exists x ∈ S(℘) such that

y = Qx. (15)

We begin the construction of Q by using the Gram–Schmidt process to find two orthonormal 
vectors in the plane defined by en and ℘:

v1 = ℘ =
(1, . . . , 1)√

n (16)

T B P Clark and A D Maestro J. Phys. A: Math. Theor. 51 (2018) 495003
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v2 =
en − (℘ · en) en

||en − (℘ · en) en||
= − (1, . . . , 1, 1− n)√

n(n− 1)
. (17)

To align ℘ with en, we need to perform a rotation by an angle θ defined by:

cos θ = ℘ · en =
1√
n (18)

around the plane formed by v1 and v2 and the identity space spanned by the (n− 2)-dimen-
sional complement of the orthonormal basis. Hence, we have

Q = + sin θ (v2 ⊗ v1 − v1 ⊗ v2) + (cos θ − 1) (v1 ⊗ v1 + v2 ⊗ v2) (19)

where  is the n× n identity matrix and ⊗ represents the tensor product of vectors. Considering 
vector components: v1i = 1/

√
n and v2i = (nδni − 1)/

√
n(n− 1) we express the rotation 

matrix in a form more useful for performing explicit calculations:

Qij = δij +
1√
n

[
1−

√
n

n− 1
(1− δin − δnj + nδnjδin) + δin − δnj

]
. (20)

Using equation (20) it is therefore straightforward to confirm that:

(i)
n∑

j=1

Qij =
√
nδin, and

(ii) ∀ x ∈ Rn such that ||x|| = 1 and x · ℘ = 0, yn =
n∑

j=1

Qnjxj = 0 .

4.2. Evaluation of the inverse participation ratio moments

Folland’s straightforward application of theorem 1 shows that the (n− 2)-dimensional mea-

sure of each of the spheres S(en) and S(℘) is 2π(n−1)/2/Γ( n−1
2 ), whose reciprocal is P(x), the 

probability of uniformly choosing a point from such a sphere. To proceed, write dσ(en) for 
the (n− 2)-dimensional surface measure of the sphere S(en) and dσ(℘) for the (n− 2)-dimen-
sional surface measure of the sphere S(℘). Applying the multivariable change of basis formula 
for integrals to equation (12) therefore yields

Figure 4. The rotation procedure for n  =  3 from an oriented to standard subsphere 
(circle) embedded in R3.
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〈IPR〉S(℘) =
∫

S(℘)
IPR(x)

Γ( n−1
2 )

2π(n−1)/2 dσ(℘)

=
Γ( n−1

2 )

2π(n−1)/2

∫

S(en)
IPR

(
Q−1y

) ∣∣J (Q−1)∣∣ dσ(en).
 

(21)

Note that Q is an orthonormal rotation matrix, so that the Jacobian 
∣∣J(Q−1)

∣∣ = 1. As mentioned 
above, yn  =  0 since y · en = 0, so that all our monomials have (n− 1) variables. Theorem 1 
further guarantees that although the expansions of IPR(Q−1y) and [IPR(Q−1y)]2 have many 
monomial terms with odd exponents, our moment calculations give non-zero values for only 
those monomial terms having all their exponents even. Combining the structure of Q−1 = Q ,T 
the multinomial theorem, the results of averaging relevant monomials 〈yakk · · · yak′k′ 〉S(en) over 
the sphere found in appendix A, and the expansions in appendix B we now give closed forms 
for the first and second moments of the inverse participation ratio over S(℘). Applying equa-
tion (21), the first moment is

〈IPR〉S(℘) =
Γ( n−1

2 )

2π(n−1)/2

∫

S(en)
IPR

(
Q−1y

)
dσ(en)

= n
n∑

i=1

(
n−1∑
k=1

〈
y4k
〉
S(en)

Q4
ki + 3

n−1∑
′

k,�

〈
y2ky

2
�

〉
S(en)

Q2
kiQ

2
�i

)

=
3n
4
Γ( n−1

2 )

Γ( n+3
2 )

n∑
i=1

(
n−1∑
k=1

Q4
ki +

n−1∑
′

k,�

Q2
kiQ

2
�i

)
 

(22)

where we have used the notation that a prime on a multiply indexed sum enforces the con-
straint that no equal indices are included, i.e.

n−1∑
′

k,�

(· · · ) ≡
n−1∑
k �=�

(· · · ) ≡
n−1∑
k=1

n−1∑
�=1

(· · · ) (1− δk�)

and the monomial averages over the subsphere 
〈
y4
〉
S(en)

 and 
〈
y2y2

〉
S(en)

 have been computed 
using theorem 1 with the individual results given in table A1. The double and triple summa-
tions over the components of the rotation matrix Q are evaluated in appendix B and substitut-
ing equations (B.3) and (B.4) into equation (22) yields:

µ1
IPR =

3n
(n+ 1)(n− 1)

[
n− 29+ 30

√
n+ 5n

(1+
√
n)2

+
24√
n
− 9

n

+
(
√
n− 1)(3

√
n+ 5)(n− 2)

n(
√
n+ 1)2

]

= 3− 6
n+ 1

 

(23)

which has the observed limiting value of 3 for n � 1.
The calculation of the second central moment proceeds in a similar fashion by using equa-

tion (14) and applying the above general preliminaries to the square of the inverse participa-
tion ratio polynomial. We have
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〈
IPR2〉

S(℘) =
Γ( n−1

2 )

2π(n−1)/2

∫

S(en)

[
IPR

(
Q−1y

)]2
dσ(en)

= n2
n−1∑
k=1

〈
y8k
〉
S(en)




n∑
i=1

Q8
ki +

n∑
′

i,j

Q4
kiQ

4
kj




+ n2
n−1∑

′

k,�

〈
y6ky

2
�

〉
S(en)


28

n∑
i=1

Q6
kiQ

2
�i +

n∑
′

i,j

(
12Q4

kiQ
2
�jQ

2
kj + 16Q3

kiQliQ3
kjQ�j

)



+ n2
n−1∑

′

k,�

〈
y4ky

4
�

〉
S(en)


35

n∑
i=1

Q4
kiQ

4
�i +

n∑
′

i,j

(
Q4

kiQ
4
�j + 18Q2

kiQ
2
�iQ

2
kjQ

2
�j

+16Q3
kiQ�iQkjQ3

�j

)
]

+ n2
n−1∑

′

k,�,m

〈
y4ky

2
�y

2
m

〉
S(en)


210

n∑
i=1

Q3
kiQ

3
�iQ

3
mi +

n∑
′

i,j

(
6Q4

kiQ
2
�jQ

2
mj

+72Q2
kiQ�iQmiQ2

kjQ�jQmj + 96Q3
kiQ�iQkjQ�jQ2

mj

)
]

+ n2
n−1∑

′

k,�,m,p

〈
y2ky

2
�y

2
my

2
p

〉
S(en)


105

n∑
i=1

Q2
kiQ

2
�iQ

2
miQ

2
pi +

n∑
′

i,j

(
9Q2

kiQ
2
�iQ

2
mjQ

2
pj

+72Q2
kiQ�iQmiQ2

pjQ�jQmj + 24QkiQ�iQmiQpiQkjQ�jQmjQpj
)]

 (24)
and combining the results of table A2 and appendix B we find

〈
IPR2〉

S(℘) = 9+
48

n+ 1
− 270

n+ 3
+

210
n+ 5

. (25)

Subtracting the square of the first moment, we arrive at the final expression for the second 
moment of the inverse participation ratio on S(℘)

µ2
IPR =

24n(n− 2)(n− 3)
(n+ 5)(n+ 3)(n+ 1)2 (26)

which indeed tends to zero as n → ∞.

5. Comparison with exact diagonalization results

Having uncovered the origin of the universal number 3 as limn→∞ µ1
IPR for the mean of the 

continuous IPR, we now undertake a systematic comparison of exact diagonalization results 
for the inverse participation ratio of the Laplacian on finite sized random regular graphs and 
the predictions on subspheres embedded in Rn as a function of z and n.
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5.1. 1st IPR moment

The finite size scaling behavior of the first moment of the IPR can be quantified by explicitly 
computing the average of the IPR over all non-Perron–Frobenius eigenvectors x ∈ E, and 
then further averaging this quantity over graph realizations. In particular, we define the mode-
averaged IPR (first IPR moment) for a given graph to be

p−1 =
1

n− 1

∑
x∈E

IPR(x), (27)

while 
〈
p−1

〉
 includes an additional average over the graph ensemble. Figure 5 depicts the n 

dependence of this quantity for all graph degrees considered, where we have averaged over 
NG  =  5000 random regular graphs for n  <  5000 and NG  =  1000 graphs for n � 5000.

The solid line describes the function µ1
IPR = 3− 6/(n+ 1) derived in equation  (23) by 

averaging the IPR polynomial over the subsphere S(℘). There is good agreement for n  >  1000, 
seemingly independent of graph degree. The error bars are obtained by computing the stand-
ard deviation of p−1 over all graphs in the generated set, with the largest uncertainties occur-
ring for z  =  3. We postpone a discussion of the size and z-dependence of graph-to-graph 
fluctuations until the end of this section.

We may investigate deviations between 
〈
p−1

〉
 and µ1

IPR by defining a normalized residual

∆1(z, n) = 1−
〈
p−1

〉

µ1
IPR

 (28)

which is plotted in figure 6 (left) as a function of n for different values of z. The residual 
decays with increasing z and n with the correction being fit by an empirically determined 
function of the form c0(z) + c1(z)/n (dashed line) where the extracted coefficients are shown 
in the right panel of figure 6. The exact diagonalization data is consistent with the absence 
of any O(1) correction to equation (23) for large z within errorbars, i.e. c0(z → ∞) → 0. The 
coefficient c1(z) appears to decay only weakly with increasing z and a z-dependent 1/n correc-
tion cannot be ruled out at the level of our statistical uncertainty for n � 1000. For n � 1000 

the residual can also be described by a function of the form c3/2(z)/n3/2 as shown by the solid 
line in figure 6 (left) supporting the leading finite n behavior of µ1

IPR.

Figure 5. Graph and mode averaged inverse participation ratio versus the number of 
vertices n for different graph degrees z (symbols). The solid line shows the finite size 
prediction for µ1

IPR obtained by averaging over a sphere.
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5.2. 2nd IPR moment

Next, we consider the prediction of equation (26) by studying the second moment of the distri-

bution of IPR values on finite sized random regular graphs: 
〈
( p−1)2

〉
−
〈
p−1

〉2
 averaged over 

NG  =  5000 unique graphs for n  <  5000 and NG  =  1000 for n � 5000. The results are shown 
in figure 7, where now deviations from the sphere-averaged value µ2

IPR (included as a solid 
line) are observed for all values of n and z considered.

The degree dependence is the most obvious: the exact diagonalization results are systemat-
ically larger than µ2

IPR for small z, with the discrepancy decreasing as z increases. We have not 
included data for z  =  3 in figure 7 as these points lie mostly off the scale and the peculiarities 
of this degree will be carefully investigated in the following subsection. Additionally, due to 
the logarithmic scale, we have only plotted errorbars showing the additive uncertainty across 
graphs. For z  >  4, the standard deviation is on the order of the symbol sizes.

We again define a normalized residual for the second moment:

∆2(z, n) = 1−
〈
( p−1)2

〉
−
〈
p−1

〉2
µ2
IPR

 (29)

and the absolute value |∆2(z, n)| is plotted in figure 8.
Here, the dominant deviations from the first sphere averaged value µ1

IPR are degree depend-
ent, and they can be described by a function of the form c02 + c12/z+ c22/z

2. The values of the 
fitting constants ck2 depend on n, with the solid line in the left panel representing their aver-
age values for n  >  1000. Different fitting functions were investigated, including those with 
non-integer negative powers of z, but the resulting second order polynomial in 1/z provided 
the optimal value of the least square fitting χ2 value. The right panel of figure 8 shows the n 
dependence of ∆2 and it appears that it remains non-zero even as n → ∞. This is consistent 
with the fitting parameter c20 which is finite within errorbars for all values of z considered.

5.3. Effects of localized eigenvectors

We now address the issue of the large graph-to-graph variance observed around the first and 
second moments of the IPR distribution for small z. This data is displayed in figure 9 where 

Figure 6. Left: Normalized deviation of the graph and mode averaged inverse 
participation ratio for the Laplacian on random regular graphs from the sphere 
averaged value of µ1

IPR, given in equation (28) in the text. Two fits to the residual data 
corresponding to c0 + c1/n (dashed) and c3/2/n3/2 (solid) are shown with the latter only 
using data with n  >  1000. Right: z-dependent fitting parameters are consistent with 
vanishing O(1) corrections to to µ1

IPR.
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the graph averaged first and second moments of the IPR distribution are shown as a function 
of n for z  =  3. The displayed errorbars correspond to one standard deviation and we observe 
that the effects are most pronounced for the variance of the IPR. Data points consistently fall 
above the sphere averaged value of µ2

IPR, and the mean value between graphs can vary by as 
much as 1000%. However, for both the first and second moments, the data is consistent with 
values of µ1

IPR and µ2
IPR computed using integration. The existence of a single outlying data 

point corresponding to n  =  5000 that is much closer to µ2
IPR in the right panel of figure 9 is 

suggestive that the sample set of unique random regular graphs may not be large enough 
to capture the variation in the eigenvector components amongst graphs as measured by the 
inverse participation ratio.

To better understand the prevalence of this effect for graphs of small degree, we have 
exactly diagonalized the Laplacian for every one of the NG = 4060 unique random regular 
graphs with n  =  16 and z  =  3 [46]. Analyzing the eigenvectors and computing the inverse 
participation ratio, we find:

〈
p−1〉 = 2.4± 0.4 (30)

Figure 7. The graph averaged second moment of the mode averaged inverse 
participation ratio distribution for random regular graphs of varying degree versus the 
number of vertices. The solid line shows the sphere averaged value, µ2

IPR.

Figure 8. The normalized positive residual between the second moment of the inverse 
participation ratio distribution for large random regular graphs and the value obtained 
by averaging over a sphere. The left panel shows that the z dependence of the correction 
can be fit via a second order polynomial in 1/z with an offset that persists in the n → ∞ 
limit (right panel).
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〈
( p−1)2

〉
−
〈
p−1〉2 = 0.95± 1.2. (31)

The origin of these sizeable graph-to-graph variations is uncovered in the left panel of fig-
ure 10, which shows a histogram of all IPR values (excluding the Perron–Frobenius mode) for 
the complete graph set plotted against their corresponding eigenvalue. The frequency of IPR 
values is shown on a logarithmic color scale from light to dark, and we observe two spikes 
near ε = z and ε = z+ 1 with the inverse participation ratio ranging up to its maximal value 
of n/2  =  8. In the right panel of figure 10 we show the maximum value of the IPR across all 
n  =  16 modes and find at least one value of 8 for nearly 15% of graphs in the set.

These graph realizations contain special eigenvectors {v} ⊂ E  of the Laplacian, with 
IPR(v) = n/2. More generally, a vector with exactly k equal non-zero sites is of the form

vi =
(−1)qi√

k
δi,i(k) (32)

where i(k) ∈ {i1, i2, · · · , ik−1, ik} and qi ∈ {0, 1} such that 
∑

i(k)(−1)qi = 0. Clearly this is 
only possible for k  =  2m where m ∈ {1, · · · , �n/2�}, with the total number of such vectors 
given by the multinomial coefficient

(
n

m, m, n− 2m

)
=

n!
m! m! (n− 2m)!

.

For vectors of this form, the inverse participation ratio is given by

IPR(v) = n
n∑

i=1

|vi|4 =
n
k2
k =

n
k (33)

which is exactly what we observe for k  =  2. This maximal value for the IPR occurs for the 
most localized mode that is still compatible with orthonormality to the Perron–Frobenius 
eigenvector and consists of exactly two non-zero values with opposite sign. We have con-
firmed that such eigenvectors indeed appear in our large-n graph ensembles for z  =  3. Such 
vectors have a maximal nodal domain count of unity [28] and we observe that almost all 
eigenvectors with IPR(v) = n/2 have non-zero components of opposite sign situated in vector 
components with consecutive indices.

Figure 9. The first (left) and second (right) moments of the inverse participation ratio 
distribution versus the number of vertices computed via exact diagonalization of 5000 
random regular graphs with degree z  =  3. The errorbars correspond to one standard 
deviation, and they are significantly larger than those observed for z  >  3. Solid gray 
lines are the predicted sphere averaged values of µ1

IPR and µ2
IPR defined in equations (23) 

and (26) respectively.
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The large graph-to-graph variations displayed in figure 9 can thus be traced back to these 
localized eigenvectors in combination with the prefactor of n in the definition of the IPR 
given in equation (8). By averaging over the sphere, we found in equation (23) that µ1

IPR ∼ 3 
for n � 1. However as just demonstrated, localized eigenvectors can contribute IPR values 
of O(n) to the first moment. This implies that the variance around the mean could contain 
dominant terms scaling like n2 which will always have an effect when averaging over a finite 
number of large graphs.

6. Discussion

In this paper we have investigated the first and second moments of the distribution of the 
inverse participation ratio for all eigenvectors of the discrete Laplacian on finite size random 
regular graphs. By exactly diagonalizing large ensembles of graphs of up to n = 10 000 ver-
tices we find that the first moment of the inverse participation ratio approaches a constant of 
order unity limn→∞

〈
p−1

〉
= 3 for all values of z. This result can be understood in terms of an 

analytically determined value for the average inverse participation ratio µ1
IPR = 3− 6/(n+ 1) 

obtained by averaging a fourth order polynomial corresponding to the IPR over the sphere 
S(℘) with uniform probability measure. We take this agreement as additional evidence that 
that the average eigenvector of the Laplacian on random regular graphs is delocalized, with its 
components tending towards being independent and identically distributed Gaussian random 
variables. For smaller values of n that do not necessarily satisfy the constraint nδ � z � n2/3−δ 
for δ > 0 [32], we observe deviations from µ1

IPR at O(1/n) that could be potentially useful 
when quantifying the distance from uniformity for a given set of random regular graph eigen-
vectors. The methodology used here to average the IPR polynomial over the hypersphere with 
constant probability could be employed to study other observables of physical interest on 
random graphs when n is large.

For the variance of the inverse participation ratio computed over all modes, we 
have again compared our exact random regular graph eigenvectors with an analyti-
cal result from continuous averaging over S(℘) with uniform measure where we find 
µ2
IPR = 24n(n− 2)(n− 3)/[(n+ 5)(n+ 3)(n+ 1)2]. Here we observe weaker agreement that 

now strongly depends on the graph degree. This discrepancy appears to persist even in the 
limits z, n → ∞. When computing the standard deviation of the IPR over an ensemble of up 

Figure 10. A histogram with shading on a logarithmic scale of the inverse participation 
ratio versus eigenvalue for all 4060 random regular graphs with n  =  16 and z  =  3 (left). 
The right panel shows the maximum value of the inverse participation ratio across all 
modes for a given graph plotted as a function of a fictitious graph index. By relabeling 
the graph index we also include the maximum value sorted by size.
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to 5000 random regular graphs, we find that for small values of the graph degree z, large fluc-
tuations between graph eigenvectors can cause variations in the first and second moments as 
large as 1000%. By analyzing the complete set of graphs for z  =  3 and n  =  16 we have shown 
that such deviations may arise from graphs where the Laplacian has localized eigenvectors 
consisting of only a few non-zero elements and thus IPR values of n/2. Although we have no 
proof that these vectors appear as eigenvectors of the Laplacian for finite size random regular 
graphs in general, we have demonstrated that there are factorially many such eigenvectors that 
are orthonormal to the Perron–Frobenius mode.

In general, the large but finite ensemble size of random regular graphs we analyze is much 
smaller than the total number of random regular graphs, which is known [34] to asymptoti-
cally grow exponentially with n. Hence, the fact that the standard deviation in the mean and 
variance of the inverse participation ratio for large n and z appear to be small is likely due to 
our samples of random regular graphs not being fully representative of the eigenvector varia-
tion which exists.

As z and n increase, extremely large ensembles of graphs need to be studied in order to to 
balance the dominant effects of localized modes, especially for non-linear observables. Thus, 
any observed deviation of the 2nd moment of the IPR from its uniform value for a given set 
of finite size graphs could be employed as a proxy for the representative suitability of the 
sampled set when n is large. This may may have practical implications for studying physical 
models with observables computed on regular graphs.

It would be interesting to explore this issue further, although considerable computational 
resources would have to be employed to diagonalize large numbers of graph Laplacians for 
n � 1. Determining the combinatorial, physical, and theoretical significance of these local-
ized eigenvectors is thus left as a topic of future work.
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Appendix A. Averages of monomials on the sphere

This appendix contains results of averaging monomials over the uniform distribution on S(en) 
necessary for the integral calculations of section  4. Note that in our case, the polynomial 
IPR(Q−1y) consists of monomials in the variables y1, . . . , yn−1 since yn  =  0. Theorem 1 guar-
antees that the integral of a monomial is non-zero precisely when its variables have even 
exponents, and as such, we give values in only this case.

When performing the first moment calculations we apply theorem 1 to two distinct mono-
mial types. The monomial y4i  has ai  =  4 for a fixed i and aj  =  0 for all j �= i, while the mono-
mial y2i y

2
j  has ai = aj = 2 and ak  =  0 for k �= i, j. In the first case, we therefore have bi  =  5/2 
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for a single i and bj  =  1/2 for j �= i. In the second case, bi = bj = 3/2 and bk  =  1/2 for k �= i, j. 
For y4k we average over S(en) and find:

〈
y4k
〉
S(en)

=

∫

S(en)
y4k P(y) dσ(en)

=
Γ( n−1

2 )

2π(n−1)/2

2Γ( 52 )
[
Γ( 12 )

]n−2

Γ( n+3
2 )

=
3
4
Γ( n−1

2 )

Γ( n+3
2 )

.

 

(A.1)

This result along with the similarly computed 
〈
y2y2

〉
 term are gathered in table A1.

A similar analysis of the five monomial types appearing in the second moment’s polyno-
mial [IPR(Q−1y)]2 yields non-zero averages for those monomials of total degree eight which 
we list in table A2.

We now discuss each of the denominators appearing in these monomial integral calcul-
ations, and do so taking the value Γ( n−1

2 ) into account. This quantity is the numerator of 
the probability P(x) of choosing points uniformly from the sphere and is a prefactor of each 
moment calculation. A closed form for the first and second IPR moments therefore depends 
on our ability to simplify several n-dependent ratios.

For the first moment, the total degree of the monomials is four, giving the denominator of the-
orem 1 a value of Γ( n+3

2 ). Hence, we seek a closed form for Γ( n−1
2 )/Γ( n+3

2 ). For a positive inte-
ger k, the Gamma function takes the values Γ(k) = (k − 1)! and Γ(k + 1

2 ) = (k − 1
2 ) · · · (

1
2 )
√
π  

so that we have the following derivations:
If n  −  1  =  2k is even, then

Γ( n−1
2 )

Γ( n+3
2 )

=
(k − 1)!
(k + 1)!

=
1

( n+1
2 )( n−1

2 )
=

4
(n+ 1)(n− 1)

. (A.2)

On the other hand, if n  −  1 is odd, then n  −  1  =  2k  +  1 for some k and

Γ( n−1
2 )

Γ( n+3
2 )

=
(k − 1

2 ) · · · (
1
2 )
√
π

(k + 3
2 )(k +

1
2 ) · · · (

1
2 )
√
π

=
4

(2k + 3)(2k + 1)
=

4
(n+ 1)(n− 1)

.

 (A.3)

Table A1. The average values of the degree four monomials with even exponents in 
y1, . . . , yn−1 taken over the domain S(en) with uniform probability.

Average:
〈
y4k
〉
S(en)

〈
y2ky

2
�

〉
S(en)

Value: 3
4
Γ( n−1

2 )

Γ( n+3
2 )

1
4
Γ( n−1

2 )

Γ( n+3
2 )

Table A2. The average values of the degree eight monomials with even exponents in 
y1, . . . , yn−1 taken over the domain S(en) with uniform probability.

Average: 
〈
y8k
〉
S(en)

〈
y6ky

2
�

〉
S(en)

〈
y4ky

4
�

〉
S(en)

〈
y4ky

2
�y

2
m

〉
S(en)

〈
y2ky

2
�y

2
my

2
p

〉
S(en)

Value: 105
16

Γ( n−1
2 )

Γ( n+7
2 )

15
16

Γ( n−1
2 )

Γ( n+7
2 )

9
16

Γ( n−1
2 )

Γ( n+7
2 )

3
16

Γ( n−1
2 )

Γ( n+7
2 )

1
16

Γ( n−1
2 )

Γ( n+7
2 )
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The second moment calculation contains only monomials of total degree eight, so that the 
denominator of theorem 1 is Γ( n+7

2 ). In a fashion similar to the derivation above, we give an 
alternate form for the fraction Γ( n−1

2 )/Γ( n+7
2 ).

When n  −  1  =  2k is even, we have

Γ( n−1
2 )

Γ( n+7
2 )

=
(k − 1)!
(k + 3)!

=
1

(k + 3)(k + 2)(k + 1)(k)
=

16
(n+ 5)(n+ 3)(n+ 1)(n− 1)

. (A.4)

On the other hand, for odd n  −  1  =  2k  +  1,

Γ( n−1
2 )

Γ( n+7
2 )

=

(
k − 1

2

) (
k − 3

2

)
· · ·

( 1
2

)√
π(

k + 7
2

) (
k + 5

2

) (
k + 3

2

)
· · ·

( 1
2

)√
π

=
16

(n+ 5)(n+ 3)(n+ 1)(n− 1)
. (A.5)

Appendix B. Evaluation of Q summations

In this appendix we provide details on the evaluation of the summations over the components 
of the rotation matrix Q given in equation  (20) that appear in the expressions for the first 
(equation (22)) and second (equation (24)) moments of the of the inverse participation ratio. 
These evaluations are performed by first noting that all such powers of Q only appear with the 
first index smaller than n and in this restricted case we can write:

(Qij)
s
=

1
(n+

√
n)s

[(−1)s + αs(n)δnj + βs(n)δij] (B.1)

where αs(n) and βs(n) are power dependent functions of n that are listed in table B1 and we 

have used the fact that δsij = δij and δsijδ
s′
n,j = 0 ∀s, s′ � 1 since i  <  n.

B.1. 1st IPR moment

We begin by using equation (B.1) to perform the double and triple summations appearing in 
the expression for the first moment of the inverse participation ratio in equation (22).

n∑
i=1

n−1∑
k=1

Q4
ki =

1
(n+

√
n)4

n∑
i=1

n−1∑
k=1

[1+ α4(n)δni + β4(n)δki]

=
1

(n+
√
n)4

[n(n− 1) + α4(n)(n− 1) + β4(n)(n− 1)]

=
n− 1

(n+
√
n)4

[n+ α4(n) + β4(n)]

 (B.2)

and using the values of α4(n) and β4(n) in table B1 we find

n∑
i=1

n−1∑
k=1

Q4
ki = n− 29+ 30

√
n+ 5n

(1+
√
n)2

+
24√
n
− 9

n
. (B.3)

Now, dropping the explicit n dependence of the αs and βs functions for simplicity, the triple 
summation may be performed in a similar manner:
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n∑
i=1

n−1∑
′

k,�

Q2
kiQ

2
�i =

1
(n+

√
n)4

n∑
i=1

n−1∑
k �=�

(1+ α2δni + β2δki) (1+ α2δni + β2δ�i)

=
1

(n+
√
n)4

n−1∑
k �=�

[
(1+ α2)

2 +
n−1∑
i=1

(1+ β2δki)(1+ β2δ�i)

]

=
1

(n+
√
n)4

n−1∑
k �=�

[
(1+ α2)

2 + n− 1+ 2β2
]

=
(n− 1)(n− 2)
(n+

√
n)4

[
(1+ α2)

2 + n− 1+ 2β2
]

=
(
√
n− 1)(3

√
n+ 5)(n− 2)

n(
√
n+ 1)2

,
 

(B.4)

where we have used α2(n) and β2(n) from table B1.

B.2. 2nd IPR moment

There are seventeen individual summations appearing in the expression for the average of the 
square of the inverse participation ratio over the sphere given in equation (24) and we will 
include the details of only a representative sample here. All can be performed using similar 
techniques employing equation (B.1) and table B1 and we begin with the sum over the comp-
onents of Q8 which can be evaluated in exact analogy with equation (B.2):

n−1∑
k=1

n∑
i=1

Q8
ki =

1
(n+

√
n)8

n−1∑
k=1

n∑
i=1

[1+ α8δni + β8δki]

=

√
n− 1

(1+
√
n)6n3

(
49+ 7

√
n− 7n+ 119n3/2 + 21n2 − 133n5/2 + 9n3

+ 111n7/2 + n4 − 57n9/2 − 13n5 + 13n11/2 + 7n6 + n13/2
)
.

Table B1. Expressions for αs(n) and βs(n) appearing as coefficients of Kronecker δ-
functions when evaluating powers of the components of the rotation matrix (Qij)

s where 
i  <  n in equation (B.1).

s αs(n) βs(n)

1 −
√
n n+

√
n

2 n+ 2
√
n (n− 1)(n+ 2

√
n)

3 −
√
n (3+ 3

√
n+ n) (n+

√
n)(3− 3

√
n− 2n+ 2n3/2 + n2)

4 (n+ 2
√
n)(2+ 2

√
n+ n) (n− 1)(n+ 2

√
n)

×(n2 + 2n3/2 − n− 2
√
n+ 2)

6 (n+ 2
√
n)(1+

√
n+ n)

×(3+ 3
√
n+ n)

(n+ 2
√
n)(n− 1)(1−

√
n+ 2n3/2 + n2)

×(3− 3
√
n− 2n+ 2n3/2 + n2)

8 (n+ 2
√
n)(2+ 2

√
n+ n)

×(2+ 4
√
n+ 6n+ 4n3/2 + n2)

(n+ 2
√
n)(n− 1)

×(2− 2
√
n− n+ 2n3/2 + n2)

×(2− 4
√
n+ 2n+ 8n3/2 − 5n2

− 8n5/2 + 2n3 + 4n7/2 + n4)
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The next novel term includes Q6 which appears as the third summation and is evaluated in 
a similar method as in equation (B.4) albeit with the modification that it involves the product 
of two different powers of Q:

n−1∑
′

k,�

n∑
i=1

Q6
kiQ

2
�i =

1
(n+

√
n)8

n−1∑
k �=�

n∑
i=1

(1+ α6δni + β6δki) (1+ α2δni + β2δ�i)

=
1

(n+
√
n)8

n−1∑
k �=�

[
(1+ α6)(1+ α2) +

n−1∑
i=1

(1+ β6δki)(1+ β2δ�i)

]

=
(n− 1)(n− 2)
(n+

√
n)8

[(1+ α6)(1+ α2) + n− 1+ β6 + β2]

=
(
√
n− 1) (−2+ n)

(1+
√
n)6 n3

(
37+ 31

√
n+ 10n+ 40n3/2 + 29n2 − 15n5/2

−14n3 + 4n7/2 + 5n4 + n9/2
)
.

The final type of term contains mixed second indices between the different rotation matrix 
powers and we consider the thirteenth sum in equation (24) as a representative of this set. 
The strategy is the same for all such terms and involves performing the inner summation by 
extracting the terms with i  =  n and j  =  n and performing the summations over j and i, then 
breaking the remaining restricted sum over i �= j � n− 1 into the difference of an unrestricted 
sum over all values of i, j � n− 1 and one with i = j � n− 1. We have

(n+
√
n)8

n∑
i�=j

Q3
kiQ�iQkjQ�jQ2

mj

= (−1+ α3) (−1+ α1)
n−1∑
j=1

(−1+ β1δkj) (−1+ β1δ�j) (1+ β2δmj)

+ (−1+ α1)
2
(1+ α2)

n−1∑
i=1

(−1+ β3δki) (−1+ β3δ�i)

+
n−1∑
i=1

(−1+ β3δki) (−1+ β1δ�i)
n−1∑
j=1

(−1+ β1δkj) (−1+ β1δ�j) (1+ β2δmj)

−
n−1∑
i=1

(−1+ β3δki) (−1+ β3δ�i)
2
(−1+ β1δki) (1+ β2δmi)

=
[
(−1+ α1)(−1+ α3)(n− 1− 2β1 + β2) + (1+ α2)(−1+ α1)

2(n− 1− β1 − β3)

+(n− 1− β1 − β3)(n− 1− 2β1 + β2)− (n− 1− 3β1 + β2 − β3 + β1β2 + β2
1)
]

and putting everything together:

n−1∑
′

k,�,m

n∑
′

i,j

Q3
kiQ�iQkjQ�jQ2

mj =
(1−

√
n)(n− 2)(n− 3)

(1+
√
n)6 n3

(
29+ 39

√
n+ 4n− 28n3/2

− 12n2 + 12n5/2 + 10n3 + 2n7/2
)
.
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